
Reinforcement learning for investment
strategies with trading signals and

transaction costs

Federico Giorgi Stefano Herzel
Paolo Pigato

Department of Economics and Finance
University of Rome “Tor Vergata”

Abstract. We apply Reinforcement Learning (RL) to determine a dynamic portfolio strategy in

a financial asset subject to transaction costs and whose returns are predicable. To compare the

performance of RL to a possible alternative, where an optimal strategy can be computed exactly,

we consider a model where the forecasting factors are linear and the transaction costs are quadratic.

Then we consider a more general and realistic setting where an optimal solution is not known and

the use of RL is a viable alternative. We find that in a non-linear setting the RL agent outperforms

the trader that approximates the market in a linear fashion and applies the theoretical optimum.

Keywords: Machine Learning; Dynamic Portfolios; Predictable Returns

1 Introduction

The most common method to approach a dynamic portfolio optimization problem is through
the Bellman Equation. This is usually done by formulating an analytically tractable model
for market dynamics, transaction costs, objective function. The classical result by Merton
[?] finds the optimal strategy when the asset follows a geometric Brownian motion and there
are no transaction costs. Gârleanu and Pedersen [?] extended it providing the solution for a
dynamic policy when the asset price changes are linearly predicted by some mean reverting
factors and the transactions costs are quadratic in the traded quantities.
For many practical situations, the model proposed by Gârleanu and Pedersen [?] presents
some difficulties when the factors are not observable, or when their relation to the price
changes is not linear or also when the transaction costs are not quadratic. In all such cases,
it may be worthy to investigate whether RL is a viable alternative, as it should work under
very general assumptions. In RL, an agent is interacting with the environment over time.

1

At each time, the agent observes the state of the environment and chooses an action; at
the next time, the agent observes a new state of the environment and receives a reward
for its action. Intuitively, RL algorithms provide a way to train the agent by letting it
learn through positive reinforcement with the goal of maximizing its cumulative reward.
Typically, the agent learns from the simulations of a large amount of “episodes”, improving
on the approximation of the value functions.
RL has already been shown to be applicable to construct dynamic strategies in finance:
as for instance in [?], where an agent is trained to optimally trade a security following an
Ornstein-Uhlenbeck process; or [?], where RL is applied to build a delta-hedging strategy
for European options with geometric Brownian motion dynamics for the underlying, in the
presence of transaction costs.
In this work, we propose an actionable RL algorithm that is able to train an agent to
optimally trade a security with signal-predictable price changes. Our algorithm, inspired
by the algorithm proposed in [?], combines the standard SARSA (state-action-reward-state-
action) algorithm with a neural network to estimate the value function. It is able to consider
a continuous set of states (current shares, market realization) and actions (shares to trade).
The value function is estimated by generating consecutive “batches” of episodes: within
each batch, the agent trained on previous batches is initially used, and then its choices are
gradually improved via simulations of new rewards.
We consider two case studies. In the first one we use the same factor model as Gârleanu and
Pedersen [?] and we observe that the RL algorithm produces a strategy whose performances
are comparable to those of the theoretically optimal strategy. In the second case study we
consider non-linear factor models and factors and we find that the RL agent outperforms an
agent that linearizes the market dynamics in order to apply the GP strategy.
In Section ?? we briefly revisit the RL theory and describe the modified SARSA algorithm
that we apply to our framework. In Section ?? we look at the applications to dynamic
trading with transaction costs. In Section ?? we discuss some further developments that are
currently being investigated.

2 Reinforcement Learning

In this section we review the main elements of the RL application.

2.1 The problem

In all RL problems, an agent is interacting with the environment over time. At each time,
the agent is willing to take actions in the environment in order to maximize a notion of
reward. At each time t, the agent observes a representation of the environment in the form
of a state st ∈ S, where S is a state space. Then, the agent selects an action at ∈ A(st).
At time t + 1, the agent receives a reward Rt+1 from the environment, and it observes the

2

updated state of the world st+1. Both reward and new state are consequences of the action
selected at the previous period.
In full generality, the actions are determined by means of a policy at = π(st) and the reward
obtained by selecting the action at after observing the state st is given by a reward function
Rt+1 = R(st, at).
The dynamics of states, actions and rewards is given by a Markov decision process (MDP)

P[st+1 = s, Rt+1 = r|s0, a0, s1, a1, r1, . . . st, at, rt] = P[st+1 = s, Rt+1 = r|st, at] (1)

The agent’s goal is to maximize the expected cumulative reward

π∗ = argmax
π

E0[
T∑
t=1

γt−1Rt] (2)

The sum in (??) can be finite (T < +∞) or infinite (T = +∞) and the constant γ ∈ (0, 1]
is a discount factor. In [?] it is discussed how expected utility maximization problems can
be formulated as (??).
To each policy π we can associate a state-action value function, which expresses the value
of starting in state s, selecting action a and following the policy π thereafter

qπ(s, a) = E[
T∑
t=1

γt−1Rt|s0 = s, a0 = a] (3)

where E denotes the expectation computed under the assumption that the policy π is
followed, i.e. that Rt+1 = R(st, π(st)). The optimal state-action value function is the value
function corresponding to the solution π∗ of the RL problem (??)

q∗(s, a) = max
π

qπ(s, a) = qπ∗(s, a) (4)

and it is the best expected value in (??) that the agent can achieve across all policies,
given the environment and the MDP. The optimal value function is solution to the Bellman
equation

q∗(s, a) = E[R + γ max
a′∈A(s′)

q∗(s
′, a′)|s, a] (5)

where the expectation is computed according to the transition law (??).
To each state-action value function q in (??) we can naturally associate its q-greedy policy,
which consists in choosing the action a that, in a given state s, gives rise to the best value

πqgreedy(s) = argmax
a∈A(s)

q(s, a) (6)

The solution to the RL problem (??) does not need to be unique. The greedy policy (??)
associated to the optimal value function (??) is a solution to the RL problem (??).

3

There are two main families of approaches to the solution of the RL problem (??). The first
family are the policy search methods, where a parametrization πθ for the policy is assumed
and the optimization is done directly in the policies space

θ̂ = argmax
θ

qπθ(s, πθ(s))

We refer to [?] for a survey. Policy search methods have been used in [?] for trading and
in [?] and [?] for hedging. These methods are robust on noisy datasets and typically fast
converging. Furthermore, it is possible to build algorithms with safety guarantees that ensure
an improvement of the policy at each update (see [?], [?], [?], [?]). However, policy search
methods are often complex to implement and very objective-specific.
The second family, that is the one adopted in this paper, are value-based algorithms, which
consist on approximating the optimal value function (??) and then taking the corresponding
greedy policy (??)

q̂(s, a) ≈ q∗(s, a) ⇒ πq̂greedy(s) = argmax
a∈A(s)

q̂(s, a)

See [?] for an overview. The estimation of the optimal value function is typically done in a
simulated environment, where the MDP assumption is used to generate a large number of
paths, or “episodes”, which are used to approximate the solution of the Bellman equation
(??). Value-based algorithms have been used in [?] and [?] for hedging. Value-based
algorithms are easy to implement for arbitrarily complex reward functions and MDPs.
However, they are sensitive to hyperparameters and they need a large number of simulations
to converge, making them hard to stress-test (see [?]).

2.2 The SARSA algorithm

The SARSA (state-action-reward-state-action) algorithm is an instance of value based methodology.
It was introduced in [?], and refined in [?], to estimate the optimal value function q∗ on
discrete state-action spaces. In [?] a modified version of SARSA, based on the methodology
discussed in [?], is used to train an agent to delta-hedge options.
In SARSA batch learning, the training is done on consecutive batches of experiments. Within
each batch, a simulator is used to generate episodes (s

(j)
0 , a

(j)
0 , s

(j)
1 , a

(j)
1 , r

(j)
1 , . . .) of the MDP

(??).

When selecting a
(j)
t from s

(j)
t , the algorithm must balance exploration and exploitation.

Exploitation consists in making use of the current best estimate of the optimal value function
to allow the agent to select optimal actions during the simulation of the episodes. Since the
estimate is not accurate, especially in the first phase of the training procedure, the agent is
allowed to take random actions to explore other areas of the action space, in order not to
overfit a poor estimate. This is called exploration, and it is done by considering the ε-greedy

4

policy

πq̂ε-greedy(s) =

{
ã, if u < ε

argmaxa q̂(s, a), u ≥ ε
(7)

where ε ∈ (0, 1), u is uniformly sampled on (0, 1) and ã ∈ A(s) is a random action.
The episodes are used to estimate the optimal value function q∗ by iteratively solving the
Bellman equation (??) on a grid of points. Finally, the value function is approximated by
means of a supervised regression model that is defined on continuous state-action variables.
At the next batch, ε is reduced and the estimate q̂ obtained at the previous batch is used to
generate new episodes.
We summarize the main steps of the algorithm.

Initialize q̂(0). For n = 1, . . . , N (number of batches)

1 For j = 1, . . . , J (number of episodes)

a Simulate state s
(j)
0 , compute a

(j)
0 = πq̂

(n−1)

ε-greedy(s
(j)
0)

b For t = 1, . . . , T

i Receive reward R
(j)
t = R(s

(j)
t−1, a

(j)
t−1) and simulate new state s

(j)
t

ii Compute new action a
(j)
t = πq̂

(n−1)

ε-greedy(s
(j)
t)

iii Update value function

q
(j)
t−1 = R

(j)
t + γq̂(n−1)(s

(j)
t , a

(j)
t)

2 Fit supervised regressor

θ∗ = argmin
θ

∑
t,j

(q
(j)
t − qθ(s

(j)
t , a

(j)
t))2

3 Define estimate for the n-th batch as

q̂(n) := qθ∗

4 Decrease ε

Output q̂(N) ≈ q∗

3 Dynamic trading with predictable returns and

transaction costs

The modern theory of dynamic asset allocation, or multiperiod portfolio choice, was initiated
in [?] and [?] and is based on the assumption that a rational investor is willing to maximize the

5

present value of the utility stemming from the strategy final wealth wT . The wealth evolution
is stochastic; however, the investor is capable of influencing the wealth increments δwt by
means of its decisions, or policy. Such utility maximization problems are typically addressed
via the theory of dynamic programming by solving the associated Hamilton-Jacobi-Bellman
equations.
In [?] an analytically tractable model for dynamic asset allocation is proposed where trading
is costly. A S-dimensional vector of securities price changes, in excess of the risk-free return
xt+1 = pt+1 − (1 + rf)pt, is linearly predicted by means of a K-dimensional vector of factors

xt+1 = Bft + ut+1

∆ft+1 = −Φft + εt+1 (8)

where it is assumed that Φ is such that the factors are stationary and the noise is Gaussian
and uncorrelated ut ∼ N(0,Σ) i.i.d., εt ∼ N(0,Ω) i.i.d., ut ⊥ εt. The objective is to
determine the strategy π, as defined by the shares n0, . . . , nT−1, that maximizes the risk-cost
penalized present value of the future expected gains (GP problem)

π∗ = argmax
π

E0{
T∑
t=1

γt−1
(
γ(n′t−1xt −

κ

2
n′t−1Σnt−1)− c(∆nt−1)

)
} (9)

In [?], Gârleanu and Pedersen find a solution to (??) for quadratic trading costs c(a) = λ
2
a′Σa,

which can be expressed as a convex combination of a static strategy and an “aim” portfolio

nt = GPt := (1− η)nt−1 + η × aimt (10)

where the “trading rate” η depends on the model parameters. The solution in (??) has a
nice interpretation1: when trading costs are extreme, or λ → +∞, the solution converges
to the static strategy nt = nt−1; when there are no trading costs, or λ → 0, the solution
converges to the static Markowitz solution [?]

nt = Markowitzt := (κΣ)−1Bft (11)

The aim portfolio in the general solution in (??) is a weighted combination of the expected
values of the future Markowitz portfolios (??). We refer to the original paper [?] for more
details.

3.1 The reinforcement learning approach

The target definition in (??) naturally leads to a RL problem as in (??). The state space
must contain all the relevant information the agent needs to observe at time t in order to

1Assuming no discount for simplicity, i.e. γ = 1

6

make a decision, or action, at; at the same time, the state space must be “minimal” in order
not to overfit the problem. With this in mind, we define the state space as

S = {(f, n)|f ∈ RK , n ∈ ZS} (12)

where f is the current observed value of the signal and n is the current position on the
securities2. For a given state st = (ft, nt−1) ∈ S, the action at determines the number of
shares to trade

A = ZS (13)

3.2 Case study 1

In our first experiment, we verify that the RL setting (Section ??) can replicate the optimal
solution (??). To do so, we need to define a reward function stemming from the trade in
such a way that the expected cumulative reward maximization problem (??) coincides with
the GP problem (??). The reward function we choose is given by

Rt+1 = γ
(
n′tBft −

κ

2
n′tΣnt

)
− c(∆nt) (14)

We consider the West Texas Intermediate (WTI) spot price3 and we assume that the investor
is following a simple momentum strategy by considering a 5 periods moving average of the
P&L

ft =
1

5
(xt + xt−1 + xt−2 + xt−3 + xt−4) (15)

The model (??) calibration yields the parameters

B = −0.066 ut ∼ N(0, 1.755)
Φ = 0.226 εt ∼ N(0, 0.131)

We consider a trading period of T = 50 days. The costs parameter is assumed to be λ = 10−2,
which yields a cost for unit trade of c(1) ≈ $0.01. We assume a risk aversion parameter of
κ = 10−3 and a 2% continuously compounded annualized rate, providing a daily discount
factor equals to γ = e−2%/252.
We train the agent on N = 6 consecutive batches; in each batch, J = 15, 000 episodes
are generated by using the MDP (??). The epsilon-greedy policy starts with a parameter
ε = 10%, which is then decreased as ε← ε/3 at each batch iteration (see Table ??).
The action spaceA in (??) is not numerically manageable in practice. In order to approximate
it with a space that is large enough to contain the optimal actions, we simulate several

2Fractional shares can be considered upon choosing n ∈ RS
3Source: FRED (Federal Reserve Economic Data) - Economic Research Division - Federal Reserve Bank

of St. Louis. Daily data from Jan-1986 to Jul-2019

7

Batch ε E0[
∑T

t=1 γ
t−1Rt]

1 10.000% -1,297.497
2 3.333% -14.624
3 1.111% -0.090
4 0.470% 1.951
5 0.124% 1.760
6 0.041% 3.119

Table 1: We report the evolution of the training phase across batches.

episodes where the Markowitz strategy (??) is applied and we pick the realized maximum
trade

A ≈ {−M, . . . ,M}, M = max
t,j
|πMarkowitz(n

(j)
t−1, f

(j)
t)|

Indeed, we assume that the trades stemming from the Markowitz strategy, which does not
take into account trading costs, are an upper bound for the optimal strategy (??).
During the creation of the episodes, the maximization defining the ε-greedy policy (??)
is addressed by using three global optimizers (SHGO [?], dual annealing [?], differential
evolution [?]) and picking the action that gives rise to the highest value. We tested a brute
force method where the function’s value is computed on a dense grid on point in order to
find the optimum, but the computational time proved to be unfeasible4.
In Figure ?? we show the shape of the function st → nt(st) defining the shares owned by
the investor while following the optimal strategy (??) and those owned by the agent trained
with RL.
In order to backtest the strategies, we have considered a trading period of T days on the
historical time series and we have compared the optimal, Markowitz and RL policies. For
each of the strategy, we have computed the realized cumulative risk-cost penalized present
value of the future expected gains, which we call wealth5.

wt =
t∑

s=1

γs−1
(
γ(n′s−1xs −

κ

2
n′s−1Σns−1)− c(∆ns−1)

)
(16)

and costs. We can see in Figure ?? how the Markowitz strategy is more volatile than the
optimal and RL strategies, as it does not consider transaction costs, resulting in a lower
cumulative wealth. We see how the RL strategy closely resembles the optimal strategy.
We have simulated J = 10, 000 paths and tested the hypothesis that the expected final
wealth of the optimal and RL agents were equal with a two-sided Welch’s t-test, which

4With the given setting, we must perform N × J × T = 4, 410, 000 global optimizations
5In reality, the “wealth” is a misnomer for the quantity (??), as it does not necessarily denote the true

value of the investor’s position. A more correct name would be “satisfaction”. However, we stick to the
nomenclature “wealth” as in related literature, see e.g. [?] or [?]

8

(a) GP strategy: shares (b) RL strategy: shares

Figure 1: In Figure ?? we show the next-step shares provided by the optimal solution (??). In
Figure ?? we show the shares owned by the RL agent given the state st = (ft, nt−1).

resulted in not rejecting the null hypothesis of equality

H0 : E{wRLT } = E{wGPT }
H1 : E{wRLT } 6= E{wGPT }
t-statistic = −1.046, p = 0.296

We then studied the linear relation wRLT = α + βwGPT + noise, which yields

α = −5.972
(−7.760,−4.184)

H0 : β = 1

β = 1.005
(0.984,1.026)

H1 : β 6= 1

R2 = 0.466 t-statistic = 0.487, p = 0.626

We visualize these results in Figure ??. We can see how the scatter plot is well arranged along
the 45◦ line, showing that the random variables wRLT , wGPT are very similar, up to statistical
error (as represented by the dispersion or the residuals noise) and up to the optimality of
the GP solution (as represented by the negative intercept α).

3.3 Case study 2

In our second experiment, we want to stress test the robustness of the RL approach to model
risk if compared to the GP solution. We consider a market where the price changes in excess
of the risk-free return is non-linear in the factors

xt+1 = g(ft) + ut+1

∆ft+1 = −Φft + εt+1 (17)

9

(a) Shares (b) Trades

(c) Wealth (d) Risk-costs

Figure 2: In Figure ?? we show the evolution of the portfolio position according to Markowitz,
GP and RL. In Figure ?? we plot the trades implemented by the three policies. In Figure ??-??
we see the evolutions of wealth and risk-costs components.

where g is a non-linear function and the same assumptions as in (??) on the white noises
and mean reversion hold. We visualize a scatter plot of factors and price changes in Figure
??. We want to compare the strategies of two traders: the first trader (GP) will linearize
the market structure (??) as g(ft) ≈ Bft (the red line in Figure ??) and it will apply the GP
solution (??); the second trader (RL) will fit a non-linear function on the market structure
(??) as g(ft) ≈ gθ(ft) (the black line in Figure ??) and it will apply RL. For trader (RL), it
is sufficient to change the reward definition (??) to

Rt+1 = γ
(
n′tgθ(ft)−

κ

2
n′tΣnt

)
− c(∆nt) (18)

10

(a) Final wealths (b) Linear regression

Figure 3: In Figure ?? we show the distribution of the final wealth according to Markowitz, GP
and RL. In Figure ?? we show the scatterplot of the final wealth according to GP and RL.

and run the same RL approach discussed in Section ??.

Figure 4: In Figure ?? we show the distribution of factors and P&Ls (ft, xt+1) (??). Trader (GP)
fits a linear model (red line) and applies the GP strategy (??); trader (RL) fits a non-linear model
(black line) and applies RL.

11

In Figure ?? we show the shape of the function st → nt(st) defining the shares owned by
the investor while following the GP strategy (??) (Figure ??) and those owned by the agent
trained with RL (Figure ??). We notice how the RL agent is able to capture the non-linear
structure of the market, not displaying a monotonic behavior of the strategy in the variables
nt−1, ft.

(a) GP strategy: shares (b) RL strategy: shares

Figure 5: In Figure ?? we show the next-step shares provided by the GP solution (??). In Figure
?? we show the shares owned by the RL agent given the state st = (ft, nt−1).

We have simulated J = 10, 000 out of sample paths and tested the hypothesis of equal
expected final wealth for the GP, RL and Markowitz strategies. As expected, the RL
approach yields a greater expected cumulative wealth than the other strategies

H0 : E{wRLT } = E{wGPT } H0 : E{wRLT } = E{wMarkowitz
T }

H1 : E{wRLT } > E{wGPT } H1 : E{wRLT } > E{wMarkowitz
T }

t-statistic = 44.1837, p < 10−4 t-statistic = 13.2352, p < 10−4

Interestingly, the non-linear structure of the market yields the GP strategy (??) performs
worse than the Markowitz strategy

H0 : E{wGPT } = E{wMarkowitz
T }

H1 : E{wGPT } < E{wMarkowitz
T }

t-statistic = −29.0007, p < 10−4

In reality, this result is not surprising if we look at the wealth (??) decomposition into the
cumulative risk-cost of the strategy

rct =
t∑

s=1

γs−1
(γκ

2
n′s−1Σns−1 + c(∆ns−1)

)
(19)

12

and the risk-cost-net wealth wrcnt = wt + rct.

Strategy E{wrcnT } Sd{wrcnT } E{rcT} Sd{rcT}
Markowitz 10.64 8.89 3.34 0.88
GP 5.31 4.49 0.86 0.23
RL 20.19 9.75 11.22 0.82

Due to the convex structure of the market, the most of the gain opportunities happen
when the factor is far away from 0. Markowitz does not account for trading costs and it
tends to spot gain opportunities, buying when ft < 0 and selling when ft > 0. Instead,
GP (??) is prone to avoid trading due to transaction costs and it achieves much lower
costs than Markowitz; by doing so, GP misses important gain opportunities. RL is able to
automatically spot the convex structure of the market and it learns that it is more convenient
to be aggressive despite the higher costs, as it is clear from the magnitude of the trades in
Figure ??.
We then studied the linear relation wRLT = α + βwGPT + noise, which yield

α = 2.368
(2.189,2.547)

H0 : β = 1

β = 1.485
(1.457,1.514)

H1 : β 6= 1

R2 = 0.512 t-statistic = 33.431, p < 10−3

confirming that RL achieves a higher wealth than GP. Indeed, a positive intercept α and a
slope β > 1 denote that the random variable wRLT is likely to be greater than the random
variable wGPT . We visualize these results in Figure ??.

4 Work in progress

In this Section we describe further developments of the setting described so far that are
currently being explored.

4.1 Non-linearly forecasting factors

Depending on the nature of the factors, the next step price changes can react differently to
signals of different strengths. Panic factors are a proxy for the panic in the market: negative
signals predict negative price changes, and with a higher variance, than positive signals do.
One “almost linear” model that is a natural generalization of (??) in this direction is the
threshold model defined as

xt+1 =

{
B(0)ft + u

(0)
t+1 if ft < c

B(1)ft + u
(1)
t+1 if ft ≥ c

, u
(i)
t+1 ∼ N(µ(i),Σ(i)) (20)

13

(a) Final wealths (b) Linear regression

Figure 6: In Figure ?? we show the distribution of the final wealth according to Markowitz, GP
and RL. In Figure ?? we show the scatterplot of the final wealth according to GP and RL.

where c is a threshold.
As an example, we consider the same security as in Case study 1 (Section ??) and we fit the
model (??) with c = 0, where the factors are the same as in (??), obtaining

B(0) = 0.015 u
(0)
t ∼ N(0.021, 1.380)

B(1) = −0.277 u
(1)
t ∼ N(0.081, 1.324)

We observe that this model can be easily incorporated in the RL framework upon properly
adapting the reward definition (??).

4.2 Non-mean reverting factors

A mean-reverting model as in (??) can be applied only to a small class of factors, such as
moving averages for commodity securities. In situations such as the stock market, where
heteroscedasticity comes into the picture, more realistic models might include Self-Exciting
Threshold AutoRegressive (SETAR) models (see [?]), GARCH models (see [?]), Threshold
ARCH models (TARCH) (see [?]) or variations thereof.
Such refined models entail non-trivial computations in the dynamic optimization problem
(??). Instead, they can be easily embedded in the RL framework, where only simulations of
such dynamics are needed.

14

4.3 From P&Ls to general risk drivers

The optimal solution by Gârleanu and Pedersen [?] assumes the dynamics (??) for the
price changes of the traded securities. In situations such as the stock market, where price
changes are not stationary, alternative risk drivers such as returns or log-returns are more
appropriate.
To the authors’ knowledge, no analytical solution to the dynamic optimization problem (??)
is available for more general risk drivers. On the other hand, the RL framework can be
applied upon properly adapting the reward definition (??). As an example, consider a linear
model on the returns

(pt+1 − pt)Diag(pt)
−1 = Bft + ut+1

where Diag(·) is the operator that transforms a vector into a diagonal matrix. Then, the
proper definition of reward is

Rt+1 = γ
(
n′tDiag(pt)Bft −

κ

2
n′tDiag(pt)ΣDiag(pt)nt

)
− c(∆nt) (21)

4.4 Fitting stability and constrained strategies

In Step 2 of the algorithm described in Section ??, it is recommended for the state-action
variables to have a comparable magnitude in order to improve the fit of the supervised
regressor. To do so, we can alternatively define the state (??) as

st =
(
ft,

nt−1
M

)
∈ RK × RS (22)

where nt−1 are the shares at the previous period (held by the trader at the beginning of
period t) and M is a proper bound. Then, the action at is defined as

at =
∆nt
M
∈ RS (23)

At the next period, the shares will be nt =
(
s
(n)
t + at

)
× M , where s(n) denotes all the

components of the state that do not include the factor. In order to ensure that the next-step
state s

(n)
t+1 ∈ (−1, 1), we search the action at in the span

at ∈
(
−1− s(n)t , 1− s(n)t

)
(24)

thereby considering a state-dependent action space (??).
We observe that the state-action formulation (??)-(??), together with the time-dependent
action space (??), provides a way to include a budget constraint to the RL agent strategy,
as defined by the bound M , thereby generalizing the unconstrained GP solution (??).

15

4.5 Dynamic updating of the value function

In Step 1-b-iii of the algorithm described in Section ??, we update the approximation of the
value function via the SARSA updating formula

q(s
(j)
t−1, a

(j)
t−1) ≈ q

(j)
t−1 = R

(j)
t + γq̂(n−1)(s

(j)
t , a

(j)
t) (25)

However, the values q
(j)
t−1 are not immediately used in the episodes simulation within the

same batch, as they only intervene at Step 2 when fitting the supervised regressor.
It is possible to exploit these intermediate approximations in order to improve the current
estimate of the value function by using a kernel function K(x, y) such that K(x, x) = 1, such
as a Gaussian kernel

q̂(n−1)(s, a)← q̂(n−1)(s, a) + (q
(j)
t−1 − q̂(n−1)(s, a)) exp

(
−
||(s, a)− (s

(j)
t−1, a

(j)
t−1)||2

2h

)
(26)

where the constant h needs to be chosen small enough not to perturb the current estimate
too much.
The kernel smoothing (??) can be also implemented out-of-sample: once the value function
q̂ is estimated in the training phase, the investor can use it to build its strategy and the real-
world rewards Rt obtained during the trading period can be used to dynamically update the
initial estimate. For long trading period, such approach is a viable alternative to a periodic
re-calibration of the model, otherwise necessary to overcome the non-stationarity of price
dynamics.

4.6 From observable to latent factors

In the training phase, it is always possible to use simulations to instruct the agent about the
true future realizations of the price changes xt+1. Therefore, rather than using the observed
factor ft to predict the future reward as in (??)-(??), we can use such simulations to provide
the actual reward

Rt+1 = γ
(
n′txt+1 −

κ

2
n′tΣnt

)
− c(∆nt) (27)

as in the original problem (??).
In practice, it is not advisable to use the factor-agnostic reward definition (??) when factors
are observable, since the realizations xt+1 incorporate the volatility of the residual ut+1 and
therefore provide more disperse realizations of the reward, making the fit less stable.
However, in a latent factor model for the price changes, a reward function that does not
include the observation of the factor is more suitable to training an agent which cannot
observe the factor in the environment state. A latent factor framework of this sort is currently
being investigated by the authors.

16

References

[1] Kenneth J Arrow. Essays in the theory of risk-bearing. Technical report, 1970.

[2] Hans Buehler, Lukas Gonon, Josef Teichmann, and Ben Wood. Deep hedging.
Quantitative Finance, 19(8):1271–1291, 2019.

[3] Jay Cao, Jacky Chen, John Hull, and Zissis Poulos. Deep hedging of derivatives using
reinforcement learning. The Journal of Financial Data Science, 3(1):10–27, 2021.

[4] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. A survey on policy search
for robotics. Foundations and trends in Robotics, 2(1-2):388–403, 2013.

[5] Stefan C Endres, Carl Sandrock, and Walter W Focke. A simplicial homology algorithm
for lipschitz optimisation. Journal of Global Optimization, 72(2):181–217, 2018.

[6] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance
of United Kingdom inflation. Econometrica, 50:987–1007, 1982.

[7] N. Gârleanu and L. H. Pedersen. Dynamic trading with predictable returns and
transaction costs. The Journal of Finance, 68(6):2309–2340, 2013.

[8] Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In In Proc. 19th International Conference on Machine Learning. Citeseer,
2002.

[9] Petter N Kolm and Gordon Ritter. Dynamic replication and hedging: A reinforcement
learning approach. The Journal of Financial Data Science, 1(1):159–171, 2019.

[10] Harry Markowitz. Portfolio selection in the journal of finance vol. 7. 1952.

[11] Robert C Merton. An intertemporal capital asset pricing model. Econometrica: Journal
of the Econometric Society, pages 867–887, 1973.

[12] John Moody and Matthew Saffell. Learning to trade via direct reinforcement. IEEE
transactions on neural Networks, 12(4):875–889, 2001.

[13] Remi Munos, Leemon C Baird, and Andrew W Moore. Gradient descent approaches
to neural-net-based solutions of the hamilton-jacobi-bellman equation. In IJCNN’99.
International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339),
volume 3, pages 2152–2157. IEEE, 1999.

[14] Matteo Papini, Matteo Pirotta, and Marcello Restelli. Adaptive batch size for safe policy
gradients. In The Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), 2017.

17

[15] John W Pratt. Risk aversion in the small and in the large. In Uncertainty in economics,
pages 59–79. Elsevier, 1978.

[16] Gordon Ritter. Machine learning for trading. Available at SSRN 3015609, 2017.

[17] Gavin A Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems, volume 37. University of Cambridge, Department of Engineering Cambridge,
UK, 1994.

[18] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[20] Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces. Journal of global optimization,
11(4):341–359, 1997.

[21] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning,
volume 135. MIT press Cambridge, 1998.

[22] Howell Tong. Threshold models in non-linear time series analysis, volume 21. Springer
Science & Business Media, 2012.

[23] Hado Van Hasselt. Reinforcement learning in continuous state and action spaces. In
Reinforcement learning, pages 207–251. Springer, 2012.

[24] Edoardo Vittori, Michele Trapletti, and Marcello Restelli. Option hedging with risk
averse reinforcement learning. arXiv preprint arXiv:2010.12245, 2020.

[25] Y Xiang, DY Sun, W Fan, and XG Gong. Generalized simulated annealing algorithm
and its application to the thomson model. Physics Letters A, 233(3):216–220, 1997.

[26] J. M. Zakoian. Threshold heteroskedastic models. Unpublished paper, Institut National
de la Statistique et des Etudes Economiques, Paris, 1991.

18

